
\

1

9 Further programming
information

Subjects covered in this chapter

* Text Legal Position
* Control Characters
* The Machine Operating System
* Interrupt structures

9.1 Cursor locations and control code extensions
In a variety of applications programs, the text cursor may be positioned outside the
current window. Various operations force the cursor to a legal position before they
are performed, these are :

- writing a character
- drawing the cursor ‘block
- obeying the control codes marked with an asterisk in the list on the following
pages.

The procedure for forcing the cursor to a legal position is as follows :

a. If the cursor is to the right of the right hand edge, then it is moved to the leftmost
column of the next line down.

b. If the cursor is to the left of the left hand edge, then it is moved to the rightmost
column of the next line up.

c. If the cursor is above the top edge, then the window is rolled down a line and the
cursor is set to the top line of the window.

d. If the cursor is below the bottom edge, then the window is rolled up a line and the
cursor is set to the bottom line of the window.

The tests and operations are done in the order given. The illegal cursor positions
may be zero or negative, which are off to the left or above the window.

Character values (see appendix III) in the range 0....31 sent to the text screen do not
produce a character on the screen (and should not be injudiciously applied) but are
interpreted as CONTROL CODES, Some of the codes alter the meaning of one or
more of the following characters, which are the code’s parameters.

The codes marked * force the cursor to a legal position in the current window
before they are obeyed - but may leave the cursor in an illegal position. The codes
and their meanings are described with first their HEX value (&XX), then the
decimal equivalent.

r programmers Chapter 9 Page 1

Additional control character commands: not generally
accessible via the keyboard CTRL key

Value Name

&OO 0 NUL

&Ol 1 SOH

&02 2 STX
&03 3 ETX

&04 4 EOT

&05 5 ENQ

8~06 6 ACK

&07 7 BEL

&08 8 * BS
8209 9 * TAB
&OA 10 * LF
&OB 11 * VT
&OC 12 FF

&OD 13 * CR

&OE 14 SO

&OF 15 SI

8~10 16 * DLE

8~11 17 * DC1

Parameter

0..255

0..2

0..255

0..15

0..15

Meaning

No effect. Ignored.

Print the symbol given by the parameter
value. This allows the symbols in the
range 0....31 to be displayed.
Turn off text cursor.
Turn on text cursor. Note that BASIC uses
an overriding cursor disable, which is
released only when it is awaiting
keyboard input.
Set screen mode. Parameter taken MOD 4.
Equivalent to a MODE command.
Send the parameter character to the
graphics cursor.
Enable Text Screen. (See 8~15, NAK, next
page.)
Sound Bleeper. Note that this flushes the
sound queues.
Move cursor back one character.
Move cursor forward one character.
Move cursor down one line.
Move cursor up one line.
Clear text window and move cursor to top
left corner. Equivalent to a CLS
command.
Move cursor to left edge of window on
current line.
Set Paper Ink. Parameter taken MOD 16.
Equivalent to PAPER command.
Set Pen Ink. Parameter taken MOD 16.
Equivalent to PEN command.
Delete current character. Fills character
cell with current Paper Ink.
Clear from left edge of window to, and
including, the current character position.
Fills affected cells with the current Paper
Ink.

Chapter 9 Page 2 More information for programmers

Value Name Parameter

&12 18 * DC2

&13 19 * DC3

&14 20 * DC4

&15 21 NAK

&16 22 SYN O..l

&17 23 ETB 0..3

&18 24 CAN

&19 25 EM Om.255
0.9255
Oa.255
0..255
0..255
0..255
OS.255
OS.255
0..255

&IA 26 SUB 1..80
1080
1..25
1..25

Meaning

Clear from, and including, the current
character position to the right edge of
window. Fills affected cells with the
current Paper Ink.

Clear from start of window to, and
including, the current character position.
Fills affected cells with the current Paper
Ink.

Clear from, and including, the current
character position to the end of window.
Fills affected cells with the current Paper
Ink.

Turn off text screen. The screen will not
react to anything sent to it until after an
ACK (&06 6) is sent.

Parameter MOD 2 0
disables the transparent option 1 enables
Parameter MOD 4
0 Sets Normal Graphics Ink Mode
1 II XOR ” ” ”
2 ” AND ” ” ”
3 ” OR II II II

Exchange Pen and Paper Inks.

Set Matrix for User Definable Character.
Equivalent to a S Y MB0 L command.
Takes nine parameters. The first
parameter specifies which character’s
matrix to set. The next eight specify the
matrix : the most significant bit of the
first byte corresponds to the top left hand
pixel of the character cell, the least
significant bit of the last byte corresponds
to the bottom right hand pixel of the
character cell.

Set Window. Equivalent to a W I N DO W
command.
The first-two parameters specify the left
and right hand edges of the window - the
smaller value is taken as the left edge,
the larger the right. The second two
parameters specify the top and bottom
edges of the window - the smaller value is
taken as the top edge, the larger the
bottom edge.

More information for programmers Chapter 9 Page 3

Value Name Parameter
&lB 27 ESC
&lC 28 FS 0..15

0..31
0..31

&lD 29 GS 0..31
0..31

&lE 30 BS

&lF 31 US 1..80
1..25

Meaning
No effect. Ignored.
Set Ink to a pair of colours.
Equivalent to an Ink command. The first
parameter (MOD 16) specifies the Ink,
the next two (MOD 32) the required co-
lours.
Set Border to a pair of colours.
Equivalent to a B 0 R D E R command. The
two parameters (MOD 32) specify the two
colours.
Move cursor to top left hand corner of
window.
Move cursor to the given position in the
current window.
Equivalent to a LO C A T E command. The
first parameter gives the column to move
to, the second the line.

9.2 Machine Operating System

The housekeeping of the CPC464 is provided by a sophisticated real time operating
system. The operating system ‘directs the traffic’ through the computer from the
input to the output.

It primarily interfaces the hardware with the BASIC interpreter - for example the
ink flashing function, where the BASIC passes the parameters - and the OS gets on
with the..task, with one part determining what is required - and the other part
determining the timing of these events.

The machine operating system is generally referred to as the ‘firmware’, and
comprises the machine code routines that are called by the high level commands in
the BASIC.

If you are tempted to P 0 K E around in the machine memory addresses or C A L L the
subroutines - save your program and listing before doing so, or you may regret it!
The extensive operating system firmware of the CPC464 is described in the
advanced user guide, and is beyond the scope of this introductory user guide.

Chapter 9 Page 4 More information for programmers

9.3 fnterrupts

The CPC464 makes extensive use of the ZSO interrupt structure to provide an
operating system that includes several multitasking features as exemplified by the
A F T E R and EV E RY structure described in chapter 8. The precedence of the
interrupts is:

Break [ESC][ESC]
Timer 3
Timer 2 (and the three sound channel queues).
Timer 1
Timer 0

Interrupts should be included after considering the consequences of all the possible
intermediate variable states at the point of interruption. The interrupt subroutine
itself should avoid unwanted interaction with the state of variable in the main
program.

The sound queues have indepedant interrupts of equal priority. Once a sound
interrupt has started, it is not interrupted by any other - enabling sound commands
to share variables with immunity from the effects mentioned above for the timer
interrupt’s structure.

When a sound queue’s interrupt is enabled, it will immediately interrupt if the
sound queue for that channel is not full, otherwise it will interrupt when the next
sound starts and there is room for more in the queue. The action of interrupting
disables the event, so the subroutine must re-enable it if further interrupts are
required. Attempting to issue a sound or testing the queue status will also disable
any event.

The priority of the [ESC] [ESC] sequence above all other interrupts ensures that
BASIC program operation can be halted without loss of the program - provided no
ancillary action has been taken to ensure the integrity of the program through one
of the various protection techniques.

9.3 AMSOFT Assembler

In order to program extensively using machine code, it will be necessary to use an
assembler. The AMSOFT assembler comprises a relocatable 280 assembler, with
editor, disassembler and monitor.

Chapter 9 Page 5

-

-..

