
5 Graphics Primer,
Finding your way around the colour and graphics of the WC464

Subjects covered in this chapter:

.

5.1 Machine-specific features

The description and applications of AMSTRAD BASIC have so far largely been
based on an industry-standard specification. Most of the purely arithmetical
operations will run with only slight adjustments from one ‘dialect’ of BASIC to
another however, the BASIC commands that control the graphics (and the text
cursor locations) are more specifically dedicated to the way in which the CPC464
hardware controls the screen display and must be carefully understood to get the
most from your micro.

As usual BASIC K E Y W 0 R D S are shown displayed in the special computer display
style typeface, further examples and a concise description of the keyword and its use
can be found by reference to the appropriate entry in chapter 8.

5.1.1 Colour Selection

‘Black’ ie no colour or illumination is considered as a colour for the purposes of all
following descriptions that describe the attributes of the colours and the various
commands associated with them.

The B 0 R D E R can be set to a ANY pair of colours regardless of the screen mode,
and is not reset when a MO D E command is issued. It may be set to flash, or to a
single steady colour.

The number of available I N K s that may be displayed simultaneously depends on
the screen M 0 D E selected. Each I N K can be set to a pair of colours ie flashing; or a
single colour ie steady. The number of usable inks at any time depends on the
screen mode as previously defined. The text PA P E R, text P E N, and graphics P E N
can then be set to an available ink.

Graphics Primer Chapter 5 Page 1

5.1.2 Transparent option and the relationship of P E N, I N K
and PAPER.
Except for the conditions where the flashing alternate colours are specified, two
I N KS are used when writing to the screen; one I N K K determines the colour of the
P E E N , while the other determines the colour of the P A P E R .
NB The number associated with PA P E R PA P E R command is the I N K declared for that
number - and NOT the colour number as listed in Appendix VI. Similarly the
number associated with the PEN command is the I N K declared for that PEN
number, and NOT the colour number as listed in Appendix VI.

The PA P E R number defaults to 0 if not specified, while the P E N number
defaults to 1 if not specified. To set the I N K for PA P E R number 0 to green, which
is colour number 9, you would type in:
I N K 0,9
Similarly to set the I N K for P EN P EN number 1 to black, which is colour number 0, you
would type in:

INK I,0
Setting the PAPER PAPER to the same INK as the PEN ie: INK INK 0,00,0 will black out the
entire display.

The text ‘writing’ can be set to be transparent or opaque using one of a series of
control characters that provide useful extensions to the major BASIC graphics
commands. With the transparent option, you can either ignore the paper colour and
overwrite the graphics, or completely overwrite the background. This brief program
illustrates the effect available:
[CTRL][SHIFTj[ESC]
10 MODE 1MODE 1
20 INK 2,19
30 DRAW DRAW 200,200,2
40 LOCATE LOCATE I,21
50 PRINTPRINT "I"I NORMAL" NORMAL"
60 PRINT 60 PRINT CHR$(22)+CHR$(l)CHR$(22)+CHR$(l)
70 ORIGIN 0,0
80 DRAW DRAW 500,200,2
90 LOCATE LOCATE 12,18
100 PRINT"2 TRANSPARENT" PRINT"2 TRANSPARENT"
110 PRINT 110 PRINT CHR$(22)+CHR$(B)CHR$(22)+CHR$(B)
120 LOCATE 120 LOCATE 22,1522,15
130 PRINT"3 NORMAL AGAIN"130 PRINT"3 NORMAL AGAIN"

The The first D RAW command in line 30 was performed before transparent mode was
set, but the second was drawn after the C H R $ C 2 2 1 + C H R$ C I) command to set
transparent mode was issued in line 60. Note how the overlap points have changed
colour, and how (in transparent mode) the I NK filling the character cell has been
completely overwritten.
Swap the location of the transparency-on (line 60) and transparency-off (line
110) commands in the program and see how this affects the displayed results. A full
list of these additional commands is given in Appendix VI.

Chapter 5 Page 2 Graphics Primer

5.2

The
fun

a) 1
Ma
321

b) 1
MC
16(

c)]
Mc
64

A$
th
WI

Ei
ar
m
W

cc

M
t1

5.2 Screen modes

There are three modes in which the screen (the text and graphics operation)
functions:

a) Normal
Mode 1: 40 columns x 25 lines, 4 I N K text
320x200 pixels, individually addressable in 4 colours

b) Multicolour mode
Mode 0: 20 columns x 25 lines, 16 I N K text
160x200 pixels, individually addressable in 16 colours

c) High Resolution mode
Mode 2: 80 columns x 25 lines, 2 I N K text
640x200 pixels, individually addressable in 2 colours

As you can see, the difference is in the number of individual horizontal ‘elements’ of
the display. Not to be confused with the small stripes on the face of the TV tube,
which are a separate feature of the TV monitor hardware.

Each of the three different displays is referred to as the screen or display M 0 D E ,
and only one mode may be displayed at any given time using BASIC. Changing
mode causes the screen to clear completely - including all text and graphics
windows (the same effect as a C L S and C LG command), but does not affect the
contents of the program memory.

Mode changes may be invoked from BASIC programs, or they may be entered using
the direct commands.

5.2.1 M 0 D E 0 is the multicolour graphics display.
16 of the 27 colours available can be displayed simultaneously. The display consists
of 160 pixels in each horizontal row, and 200 in each vertical column. A plan of this
grid appears in Appendix VI.

In M 0 D E 0, there are 20 characters on each of 25 lines.

5.2.2 M 0 D E 1 1 is the ‘standard’ or default mode.
M 0 D E 1 is pre-set when the CPC464 is turned on. 4 of the 27 colours may be
displayed simultaneously - although you can switch rapidly through all 27 if you
want. The display is 320 pixels wide, by 200 high. A plan of this grid appears in
Appendix VI.

In M 0 D E 1, there are 40 characters on each of 25 lines.

Chapter 5 Page 3

5.2.3 M o d e 2d e 2 is the high resolution mode.

MO D E D E 2 allows two colours to be used simlutaneously, and is used primarily for its
ability to produce 80 text characters per line - which makes a program much easier
to write, since you can see so much more of the program at a glance.

Y 0 D E 2 provides 640 pixels per horizontal row, again with 200 in each vertical
column.

5.2.4 Try this....

With the CPC464 fully reset using [CTRL][SHIFTJ[ESC], type in this program:

5 REM GRAPHICS EXAMPLE DEMONSTRATIONREM GRAPHICS EXAMPLE DEMONSTRATION
10 MODE 10 MODE 11
15 INK 2,02,0
16 16 INK INK 3,6:3,6: REM SETS THE COLOUR USED REM SETS THE COLOUR USED IN LINE 90LINE 90
17 BORDER 1: REM DARK BLUE17 BORDER 1: REM DARK BLUE
20 20 CLG: REM CLEAN UP THE DISPLAYCLG: REM CLEAN UP THE DISPLAY
30 30 b%=RND*5+1b%=RND*5+1 :REM:REM SET UP PSEUDO SET UP PSEUDO
RANDOM INTEGER VARIABLESRANDOM INTEGER VARIABLES

40 40 c%=RND*5+1c%=RND*5+1
50 50 ORIGIN 320,200 :REM :REM FIX THE GRAPHICS THE GRAPHICS ORIGIN
60 60 FOR aFOR a = 0 TO 1000 STEP PI/30= 0 TO 1000 STEP PI/30
70 70 x%=100*COSCa)x%=100*COSCa)
80 80 MOVE x%,x%MOVE x%,x% :REM MOVE THE GRAPHICS CURSOR:REM MOVE THE GRAPHICS CURSOR
90 90 DRAW DRAW 200*COSCa/b%),200*SINCa/c%),3200*COSCa/b%),200*SINCa/c%),3
:REM:REM DRAW THE LINE DRAW THE LINE

91 IF 91 IF INKEYS<>""INKEYS<>"" THEN 20 THEN 20
100 NEXT :REM BACK TO 100 NEXT :REM BACK TO 60 60 UNLESS INTERRUPTED AT 91UNLESS INTERRUPTED AT 91
110 GOT0 20110 GOT0 20

Now RUN Now RUN the program. Hit ‘any key’ on the keyboard, to get another pattern. This
demonstrates several important features of the CPC464’s hardware and software:
the CPC464 ‘writes the screen’ very smoothly without judder or ‘tearing’, and the
software includes commands that permit very sophisticated effects to be achieved
with the minimum of effort. The REM REM statements (R EMarks) are simply there for
your convenience, you don’t need to include them for the program to work, it just
helps you (and particularly people who did not write the program in the first place)
to understand what’s going on.
Note that several of the line numbers indicate ‘afterthought’ entries - and whilst we
could tidy the listing by simply issuing a R ENUM R ENUM command, it will help you to
follow the way in which programs evolve and develop from their initial structures if
we leave the original numbering.

S A V E this program on the cassette - eg:

SAVE "GRAPHICS 5.5.84"SAVE "GRAPHICS 5.5.84"

Chapter 5 Page 4 Graphics Primer

This
nehneh
1010
1111

2020
3030
4040

5;'5;'
II

;;;;
8080
9090
1010
1111
1212
1717
1;1;

ss
?I;?I;
1;1;
IIII
1'1'

This graphics demonstration plots a different coloured interference pattern:
new
10 a$=INKEY$: REM PRESS ANY KEY T OT O

INITIATE A NEW PATTERN SEQUENCENEW PATTERN SEQUENCE
20 20 IF a$=""a$="" THEN 10 THEN 10
30 CLS
40 m=INTCRND*3):REMm=INTCRND*3):REM SELECT A RANDOM SELECT A RANDOM
NUMBER BETWEEN NUMBER BETWEEN 00 AND 3 AND 3

50 50 IF m>2m>2 THEN THEN 40:REM40:REM TRY AGAIN TRY AGAIN
IF THE VALUE EXCEEDS IF THE VALUE EXCEEDS 2

60 MODE mMODE m
70 70 il=RND*26:REMil=RND*26:REM SELECT RANDOM INK VALUES SELECT RANDOM INK VALUES
80 80 i2=RND*26i2=RND*26
90 IF 90 IF ABSCil-i2)<5ABSCil-i2)<5 THEN THEN 70
100 INK O,il:INK O,il:INK l,i2l,i2
110 110 s=RND*5+3s=RND*5+3
120 120 ORIGIN 320,-100320,-100
130 FOR 130 FOR x=x= -1000 TO 0 STEP -1000 TO 0 STEP ss
140 MOVE 140 MOVE 0,00,0
150 DRAW 150 DRAW x,300:DRAWx,300:DRAW 0,600 0,600
160 MOVE 160 MOVE 0,00,0
170 DRAW -x,300: DRAW 0,600170 DRAW -x,300: DRAW 0,600
180 180 a$=INKEY$a$=INKEY$
190 IF 190 IF a$<>""a$<>"" THEN THEN 30:REM30:REM INTERRUPT INTERRUPT
THE LOOP BY PRESSING ANY KEYTHE LOOP BY PRESSING ANY KEY

200 NEXT' x200 NEXT' x
210 GOT0 10210 GOT0 10

This and the preceding program illustrate simple mathematical concepts in a
colourful and very visual way. Both are basically doing some sums on randomly
generated ‘seed’ numbers to ensure that each pattern is different in some way, and
displaying the results as random lines.

Your CPC464 is excellent electronic graph paper, and one of the most classic
geometrical patterns is a sine wave:

10 REM DRAW REM DRAW SINE WAVEWAVE
20 MODE 220 MODE 2
30 INK 30 INK I,21I,21
40 INK 40 INK 0,00,0
50 CLS50 CLS
60 DEG60 DEG
70 70 ORIGIN 0,200
80 FOR FOR n=0n=0 TO 720 TO 720
90 90 y=SINCn)y=SINCn)
100 PLOT 100 PLOT n*640/720,198*y,ln*640/720,198*y,l
110 NEXT110 NEXT

Graphics Primer Chapter 5 Page 5

,.

The P LOT statement in line 100 is the part of the program that draws the line. It
produces one dot (pixel) on the screen for each calculation it makes in the
F 0 R N E X T loop (lines 80-l 10) - and the result is displayed on your screen.
The CPC464 has many simple and powerful commands - you can add to the effect of
the above progam by simply adding:

15 BORDER BORDER 6,96,9

R U N R U N again. The border is now alternating between the colour numbers 6 and 9. The
flashing rate is set by the ‘default’ values. To make the program loop continuously
until you press [ESC]ape (twice to break out of the program, once to suspend
operation), add:

120 GOT0 50

See that the flashing border did not stop when the program did - this is because the
border is controlled indepedently of the rest of the program. To stop the flashing and
set the border to bright blue, press [ESC] twice, then change line 15 to

15 BORDER 215 BORDER 2

R U N R U N the program, and the flashing stops.

To change the colour of the curve and the background, you must change the colour
of the I N K in lines 30 30 and 40. When you L I S T the program, it should then look
like:

10 REM DRAW REM DRAW SINE WAVEWAVE
15 BORDER 215 BORDER 2
20 MODE 220 MODE 2
30 30 INK I,2I,2
40 40 INK 0,20
50 CLS
60 DEGDEG
70 ORIGIN 0,20070 ORIGIN 0,200
80 FOR 80 FOR n=0n=0 TO 720 TO 720
90 90 y=SIN(n)
100 PLOT 100 PLOT n*640/720,198*y,ln*640/720,198*y,l
110 110 NEXT
120 GOT0 50

The number 1 at the end of the P L 0 T statement in line 100 tells the computer
to plot the curve in the colour specified by the I N K 1 command in line 30. Check
the definition of the P L 0 T statement in the keyword listing of Chapter 8 and you
will see exactly how the various parts of this statement work.

If you look closely at the curve being plotted on the screen, you will see that it is not
a continuous line, but is broken in many fine segments. The smallest individual
segment is an example of a ‘pixel’ described earlier.

Chapter 5 Page 6

. .

Graphics Primer

54
YI
di
Cl

c c

T

cc

cl
t1
C(

Y

N

,’

52.5 The graphics cursor and drawing lines
You You have now tried some of the ways you can translate programs into graphic
displays - and several of the program commands and concepts have been given a
chance to perform. When drawing lines at the screen, there are some important
considerations to watch out for to avoid confusion.

The first point to watch for is the current state of the program memory. The
computer remembers the current colour settings even after a NEW instruction to
clear the program memory. To reset everything to the starting point, you should use
the simultaneous [CTF?L][SHIFTJ[ESCAPEJ[CTF?L][SHIFTJ[ESCAPEJ sequence to get back to the switch-on
conditon. (S(S A V E A V E anything you need to before doing this!)

You can prove this by simply typing:

NEW:CLSNEW:CLS

. . ..after you have broken out of the previous program. Now type:.

DRAW 100,100DRAW 100,100

The DRAW DRAW instruction draws a straight line from the last location of the
GRAPHICS cursor to the x,y coordinate point specified (100,100). The GRAPHICS
CURSOR is an invisible concept that indicates the point at which the next graphics
operation will occur.

To find out where it is, you must use the functions X P 0 S and Y P 0 S . Type in:

PRINT XPOSPRINT XPOS
The answer is
100100

(which is the same for Y P 0 S at this point)

Note that if the text goes down to the bottom of the screen and causes the display to
be moved up (‘scrolled’ up), the graphics display will move up as well but the
graphics cursor position remains the same as before. Try it - hold down the cursor
down key [J] until the screen clears away at the top, then ask for X P 0 S and Y P 0 S
again. The graphics cursor value is still there in the memory.
To specify a colour for a line drawn, add the instruction at the end of the D D RAW
command (see the description of the P LOT command after the program on the
previous page - it works the same way).

You must first have specified the I N K - and remember that you can only use the
number of I N KS and colours that are permissible in the screen mode you are using.
To see this, type in:

10 MODE 1MODE 1
20 INK 20 INK 0,100,10
30 30 ORIGIN ORIGIN 0,00,0
.40.40 INK INK I,26I,26
50 50 INK 2,02,0
60 60 DRAW DRAW 320,400,1320,400,1
70 DRAW 70 DRAW 640,0,2640,0,2

Graphics Primer Chapter 5 Page 7

Here’s an example of a program that uses all the items mentioned so far, and
introduces a couple more useful concepts. See how the first line (10) sets up the
colour and ink conditions to make sure that whatever was in the memory of the
CPC464 at the time is reset to produce the expected results:

10 INK 0,0:INK0,0:INK 1,26:INK1,26:INK 2,6:INK2,6:INK 3,18:3,18: BORDER 0 BORDER 0
20 REM this programs draws patterns20 REM this programs draws patterns
30 mode l:DEG30 mode l:DEG
40 PRINT 40 PRINT "3.4"3.4 or 6 sided pattern ? or 6 sided pattern ? ";";
50 LINE INPUT 50 LINE INPUT pp
60 IF 60 IF p$=“3” THEN THEN sa=120:GOTOsa=120:GOTO 100 100
70 IF IF p$="4"p$="4" THEN THEN sa=135:GOTOsa=135:GOTO 100 100
8080 IF IF p$="6"p$="6" THEN THEN sa=1'50:GOTOsa=1'50:GOTO 100 100
90 GOT0 5090 GOT0 50
100 100 PRINT:PRINTPRINT:PRINT “CahJ~atiW”;

105 IF 105 IF p$="3"p$="3" THEN ORIGIN THEN ORIGIN 0,-50,0,640,0,4000,-50,0,640,0,400
ELSE ORIGIN ELSE ORIGIN 0,0,0,640,0,4000,0,0,640,0,400

110 DIM 110 DIM cx(5),cy(5),r(5>,lc(5)cx(5),cy(5),r(5>,lc(5)
120 DIM 120 DIM np(5)
130 DIM DIM px%(5,81),py%(5,81)px%(5,81),py%(5,81)
140 st=l140 st=l
150 150 cx(l>=320:cy(l)=200:r(l)=80cx(l>=320:cy(l)=200:r(l)=80
160 FOR st=l TO 4160 FOR st=l TO 4
170 170 r(st+l)=r(st)/2r(st+l)=r(st)/2
180 NEXT st180 NEXT st
190 FOR st=l TO 5190 FOR st=l TO 5
200200 lc(st)=0:np(st)=0lc(st)=0:np(st)=0
210210 np(st)=np(st)+lnp(st)=np(st)+l
220 220 px%(st,np(st>)=r(st>*SIN(lc(st))px%(st,np(st>)=r(st>*SIN(lc(st))
230 230 py%(st,np(st))=r(st)*COS(Lc(st))py%(st,np(st))=r(st)*COS(Lc(st))
240240 lc(st)=lc(st)+360/r(st)lc(st)=lc(st)+360/r(st)
245 IF 245 IF (lc(st>(lc(st> MOD MOD 60>=060>=0 THEN PRINT THEN PRINT ".";".";
250250 IF lc(st) < 360 THEN 210 360 THEN 210
252252 px%(st,np(st)+l)=px%(st,l)px%(st,np(st)+l)=px%(st,l)
254254 py%(st,np(st>+l)=py%(st,l)py%(st,np(st>+l)=py%(st,l)
260260 NEXT stNEXT st
265265 CLS:inkCLS:ink I,2I,2
270270 st=lst=l
280280 GOSUBGOSUB 340 340
290290 LOCATE LOCATE I,1I,1
300300 EVERY EVERY 25,l25,l GOSUBGOSUB 510 510
310310 EVERY EVERY 15,215,2 GOSUBGOSUB 550 550
320320 E V E R Y 5,35,3 GOSUB 590 590
530530 GOT0 330GOT0 330
340340 R E M d r a w c i r c l e p l u s 3,4 o r

a r o u n d i t
350 cx%=cx(st):cy%=cy(st):lc(st
360 FOR x%=1 TO TO np(st)
3 7 0 MOVE MOVE cx%,cy%cx%,cy%

6 6 o.thers

I=0

Chapter 5 Page 8

/more..

Graphics Primer

381
I+*I+*
39
x%
4040
4141
4242
4343
4444
4545
4646
4747
4848
4545
5151
5151
5;5;
5:5:
5r5r
5151
5(5(
5'5'
5:5:
5'5'
66
66
66

TT
dd
lili

I

380 DRAW DRAW cx%+px%(st,x%),cy%+py%(st,x%),
l+.(st MOD MOD 3)3)
390 DRAW 390 DRAW cx%+px%(st,x%+l),cy%+py%(st,
x%+l),l+(st MOD MOD 3)3)
400 NEXT 400 NEXT x%x%
410 IF 410 IF st=5st=5 THEN RETURN THEN RETURN
420 420 lc(st>=0lc(st>=0
430 430 cx(sttl>=cx(st)+l.5*r(st)*SIN(sa+lc(st))cx(sttl>=cx(st)+l.5*r(st)*SIN(sa+lc(st))
440 440 cy(st+l)=cy(st)+l.5*r(st)*COS(sa+lc(st))cy(st+l)=cy(st)+l.5*r(st)*COS(sa+lc(st))
450 450 st=st+lst=st+l
460 460 GOSUBGOSUB 340 340
470 470 s t = s t - 1
4 8 0 lc(st)=lc(st)+2*sa
490 IF (lc(st) MOD MOD 360)<>0360)<>0 THEN 430 THEN 430
500 RETURN500 RETURN
510 510 ik(l)=l+RND*25ik(l)=l+RND*25
520 IF 520 IF ik(l)=ik(2)ik(l)=ik(2) OR OR ik(l>=ik(3>ik(l>=ik(3> THEN 510 THEN 510
530 INK 530 INK l,ik(l>l,ik(l>
540 RETURN540 RETURN
550 550 ik(2)=1+RND*25ik(2)=1+RND*25
560 IF 560 IF ik(2)=ik(l>ik(2)=ik(l> OR OR ik(2)=ik(3)ik(2)=ik(3) THEN 550 THEN 550
570 570 INK 2,ik(2)2,ik(2)
580 RETURN580 RETURN
590 590 ik(3)=1+RND*25ik(3)=1+RND*25
600 IF 600 IF ik(3>=ik(l>ik(3>=ik(l> OR OR ik(3)=ik(2>ik(3)=ik(2> THEN 590 THEN 590
610 610 INK 3,ik(3)3,ik(3)
620 RETURN620 RETURN

When you R U N this program, it will ask you a question (line 40) 40) - answer 3 for the
speediest results. The program will then display the message C a 1 c u 1 a t i n a t i n gg ,
and display a dot . every few seconds (line 245) 245) to indicate that it is still
‘thinking’ to itself and confirm that the program is still running.

The subroutines called by lines 300-320 flash the different coloured inks at the rates
determined by the E V E R Y command. If you want to slow down the flashing, E D I T
lines 300-320 to read:

300 EVERY EVERY 250,l250,l GOSUBGOSUB 510 510
310 EVERY 310 EVERY 150,2150,2 GOSUBGOSUB 550 550
320 EVERY 320 EVERY 50,350,3 GOSUBGOSUB 590 590

To see what you To see what you have done, look up the E V E R Y command in Chapter 8, it’s one of
the most useful features in AMSTRAD BASIC. One interesting effect of the
E V E R Y command is the way it stacks up requests to do something if the program is
interrupted by pressing the [ESC] key - only ONCE.
Pause the operation of the program for a few seconds by doing this, then restart by
pressing ‘any key’. The display will flash frantically as the ‘queued’ timing
instructions rush through to catch up. There’s only a finite amount of space in the
queue, so after a while, the new EV E R YEV E R Y command gets discarded until space is
made by allowing those in the queue to work their way through.

Graphics Primer Chapter 5 Page 9

5.3 Windows

The user can select up to eight text windows into which characters are written, and
also a graphics window into which plotting may be performed. Windows are reset to
defaults when the screen mode is set. See the keyword description in Chapter 8.
NB: If the text window is equivalent to the entire screen (default), then rapid rolling
is achieved by hardware. If the text window is less than the available screen, then
rolling is achieved by software, which is correspondingly slower.
The W I N D 0 W command specifies the left/right/top/bottom character cells of the
specified screen stream - windows may overlap one another, and provide a rapid
means of drawing filled boxes. Before starting to explore them, type:

KEY KEY 139, "mode 2:paper O:ink "mode 2:paper O:ink 1,O:ink1,O:ink 0,9:0,9:
list"+chr$(l3)list"+chr$(l3)

This sets the smaller [ENTER] [ENTER] key to clear and restore the text to visible colours
should you get lost in some invisible combinations of P E N and PA P E R. The fol-
lowing program draws a series of windows across the screen, and illustrates two
major points:

5 MODE 0MODE 0
10 FOR 10 FOR n=0n=0 TO TO 7
20 WINDOW WINDOW #n,n+l,n+6,n+l,n+6#n,n+l,n+6,n+l,n+6
30 PAPER 30 PAPER #n,n+4#n,n+4
40 CLS #n40 CLS #n
50 FOR 50 FOR c=lc=l TO 200:NEXT TO 200:NEXT
60 NEXT60 NEXT

The first point is that each new screen overwrites the one before, and the second is
to emphasise that the messages appear in stream #0 at all times (unless
redirected). Before doing anything else, type:

LISTLIST

And the program will be squeezed through stream 0. Try:

LIST #5

Then:

CLS #6

..illustrating the point that the most recently addressed screen stream will
overwrite all else - and that the system message Ready Ready appears in stream 0,
even when the listing was sent to stream 5.

Using the W I N D 0 W SW A P command, add in line 55:

55 IF n=3 THEN WINDOW SWAP THEN WINDOW SWAP 7,07,0

You You may imagine that this will direct the Ready Ready message at the end of the
program execution to stream 7. Run it and see. By developing this simple program,
you will get an appreciation of the way W I N D 0 W s operate and interact.

Chapter 5 Page 10 Graphics Primer

6
soul
usin
volu
The
end
ster
Thil
thrc

Th
im
un

SU
8
*
*
*

Ifr
PRPR
AnAn
re1
OV(
SP’
of
the

6.

w
ch

:;
3)

SfSf

