
4 Variables, operators
and data

Handling the information in a BASIC program

Subjects covered in this chapter:
* Getting familiar
* Variable types : real, integer and string
* Operators, logical expressions
* Arrays
* DATA

4.1 Spot the reserved word

Note (if you haven’t already) that the commands and other reserved words in
AMSTRAD BASIC are delimited, either by spaces or punctuation marks, numeric
operators etc. Programs are easier to read and debug, because although you may
enter the keywords either in UPPER CASE or lower case - when the program is
L I S Ted, all keywords have been converted to UPPER CASE anyway. If they
haven’t then there is an error concerning the way they have been typed in, and the
program will not run.

AMSTRAD BASIC allows you to imbed keywords into variable names. A variable
in AMSTRAD BASIC is a name that you assign to a specific element. It can be as
simple as a single letter (variables must always start with a letter - not a number),
although its easier to read and understand a long program if you use variable
names that reflect what’s going on:

ANSWER=4*4:ANSWER=4*4: print print ANSWERANSWER

Variables in AMSTRAD BASIC may contain up to 40 characters (the first must be a
letter), and all 40 are significant. Variables must not contain any spaces - or BASIC
will only read the letters (or letters and numbers) up to the first space and then
respond with:

Syntax errorerror

Which is indicating that an illegal sequence of characters has been entered (see
Appendix VIII). If you want to include phrases with words separated, then use a full
stop . where you would otherwise have left a space. All the usual forms of
subscripted variables are possible, bearing in mind the need to D I Mension arrays.

More BASIC Chapter 4 Page 1

4.2 Short cuts

It’s tedious typing P R I N T every time, so you can use a ? instead, and BASIC will
understand this means P R I NT (so long as it is not placed inside any phrase
within quotation marks ““1. Note that the ? option does not require to be
de-limited using a space like the word P R I N T. T. If you write the line as a program
rather than a direct command:

10?4*4
run

The answer is still the same, but now L I ST L I ST this one-line program and as if by
magic.....

l i s t
10 PRINT PRINT 4*44*4

BASIC has also inserted a space before expanding the question mark. In P R I NTP R I NT
statements that use quotation marks....

10?"HELLO"10?"HELLO"

You You may also get lazy and drop the final quote marks ” on a line, as evidenced by
the small [CTRL][ENTER] shorthand cassette load and run routine which
prints R U N ” on the screen. The same works in program lines, but it’s not a good
habit to get into, since if you subsequently go back to the line and add to it, you will
probably forget to close the quotes again.

4.3 Multi-statement lines and Mixed calculations

You can perform a number of operations on a single line of BASIC - in fact, as many
as you like up to the maximum line length of 255 characters. As usual, statements
should be separated by colons :

?2*8/5+5-4*777E9/3

returns..

-1.036E+12

However, it is essential to understand the order in which the various mathematical
operators (+ - * / MO D etc) are recognised by BASIC, or you will make
fundamental mistakes. They are:

t Exponentiation - raising a number to a given power of 10.
M 0 D Modulus - The remainder after Integer division.

Unary Minus (the minus sign used to declare a number as negative)

;
Multiply
Divide

\ Integer division: the result is shortened to give the whole number part of the
result, the decimal part is discarded by BASIC.

+ Addition
Subtraction

Chapter 4 Page 2 More BASIC

An:
con
wil
the
har

4.4

W E
she

!z
net
US(

Ml
to
an
en

TlY
8e1
(Pi
Yc
SC

4,

B.
at
P’
in
cc

T
01

01
a
8:

I

Anything contained within brackets (1 is dealt with first of all, and if the
contents of the brackets are themselves in the form a mixed calculation, then these
will be handled in the order outlined above - including any further brackets within
the brackets. You must always end up with as many right hand brackets as left
hand brackets in such an expression or a S y n t a x e r r o r will result.

4.4 Getting going

We’ve come some way since we introduced the P R I NT statement back in 3.5. You
should have picked up enough of the ground rules of AMSTBAD BASIC to enable a
progression to be made into the more ‘computer’ like realms of BASIC as opposed to
the simple pseudo-calculator features. The BASIC keywords will be introduced as
necessary, refer to Chapter 8 for the alphabetical listing and descriptions if their
use is not obvious from the context in which they occur.

Many BASIC keywords say what they mean - the GOT0 50 command means go
to the line numbered 50 and continue execution from there. E N d means just that,
and BASIC returns to the direct command prompt Ready whenever it
encounters an E N D - even if it’s the first line of the program.

The direct (or immediate) mode allows you to enter a number of program steps by
separating the commands with a colon : . However, once you execute the line
(press the [ENTER] key) - the instructions are processed, and the line is discarded.
You can always re-run it using the copy cursor feature, assuming it’s still on the
screen after it was executed.

4.5 Conditional and logical statements

BASIC makes extensive use of the computer’s capacity to do simple repetitive tasks
at speed - and without getting bored. A number of the programming commands are
provided to assist in the generation of this process (looping): commands that
initiate, continue and spot when to finish looping, if a predetermined set of
conditions should be met.

The last of these elements of loop control concerns the ‘relational expression’. In
other words, how one piece of data ‘relates’ to another is determined by a ‘relational
operator’. You can compare one piece of variable data with another, or you can
compare variable data with a predetermined reference. The relational operators
are:

< less than
< = less than or equal
= equal
> greater than
> = greater than or equal
< > not equal

More BASIC Chapter 4 Page 3

Here comes a brief program to demonstrate these operators, based on subject very
dear to our hearts. If you are not already looking at the switch on screen message:

tc
Amstrad 64k Microcomputer Amstrad 64k Microcomputer (VI>(VI>
c 1984 Amstrad Consumer Electronics pc 1984 Amstrad Consumer Electronics p

and Locomotive Software Ltdand Locomotive Software Ltd

BASIC 1.01.0

ReadyReady

. . ..then press the [CTRL] [SHIFT] and [ESC] keys, holding them down
simultaneously, and the computer will reset to the above message. Now proceed and
type in the following (editing instructions are given in 1.2.7):

10 INPUT "WHAT IS YOUR SALARY";SALARYINPUT "WHAT IS YOUR SALARY";SALARY
20 IF SALARY 20 IF SALARY << 10000 THEN GOT0 30 ELSE 40 10000 THEN GOT0 30 ELSE 40
30 PRINT "ASK FOR A PAY 30 PRINT "ASK FOR A PAY RISE":ENDRISE":END
40 PRINT "ASK FOR A BIGGER CAR"40 PRINT "ASK FOR A BIGGER CAR"

Run this small program by typing:

RUNRUN

and the obligatory [ENTER]. The computer asks you a question:

WHAT IS YOUR SALARY?WHAT IS YOUR SALARY?

(Note how the computer automatically adds the question mark when it wants you to
respond with an input of data). Answer the question using only numbers - not
letters, currency signs or commas, and enter your answer with the [ENTER] key.
Add line 5 below by simply typing after the end of the above operation, when the
R e a d yd y prompt reappears:

5 CLS

RUN again to wipe the screen. If your first answer was less than 10000, make this
reply more than 10000, and you will see the difference. Now extend the original
program by adding line 50 below:

5 CLS
10 INPUT "WHAT IS YOUR SALARY";SALARYINPUT "WHAT IS YOUR SALARY";SALARY
20 IF SALARY 20 IF SALARY CC 10000 THEN GOT0 30 ELSE 40 10000 THEN GOT0 30 ELSE 40
30 PRINT "ASK FOR A PAY RISE": END30 PRINT "ASK FOR A PAY RISE": END
40 PRINT "ASK FOR A BIGGER CAR"40 PRINT "ASK FOR A BIGGER CAR"
50 IF SALARY 50 IF SALARY >30000>30000 THEN PRINT "and THEN PRINT "and
get a good accountant"get a good accountant"

runrun

The EN D at line 30 stops the program and returns to the prompt. Since there’s no
end on line 40, the program proceeds to see if the S A LA R Y variable is greater than
30000 - in which case the program responds with yet more sound advice!

Chapter 4 Page 4 More BASIC

Ke

5
IEIE
2c
34
4c
51

61

rlrl
NN
tktk
tttt
P'P'
alal

AA
t1t1
uu
t1t1

Keep going, and add another line at 60:

5 CLS
10 INPUT "WHAT IS YOUR SALARY";SALARYINPUT "WHAT IS YOUR SALARY";SALARY
20 IF SALARY 20 IF SALARY << 10000 THEN GOT0 10000 THEN GOT0 30 ELSE ELSE 40
30 PRINT "ASK FOR A PAY RISE": ENDPRINT "ASK FOR A PAY RISE": END
40 PRINT "ASK FOR A BIGGER CAR"PRINT "ASK FOR A BIGGER CAR"
50 IF SALARY SALARY >30000 THEN PRINT THEN PRINT
"and get a good accountant""and get a good accountant"

60 60 IF SALARY SALARY >25000 THEN PRINT THEN PRINT
,I,I and lend me a fiver"and lend me a fiver"

runrun
NoteNote the relational the relational operators (> and 0 act as delimiters to mark the boundaries of
the number, and that you do not need to put a space before or after them - if you do,
the space will be ignored by BASIC. If you answer 2 6 0 0 0 when you run this
program, then you will see that BASIC passes through line 50 as if it was not there,
and gets trapped by the operation in line 60.60.

At this point, construct a program of your own using the topics covered so far. Note
the way in which this program has been ‘grown’ - most programs evolve in this way,
which introduces perhaps the most important concept in programming that utilises
the ideal organising ability of BASIC....

4.6 Evolution : the origin of programs
The way in which BASIC allows you to build programs as you go along is its most
convenient feature. Purists will argue that this convenience leads to sloppy and
‘unstructured’ programming techniques with programs being tacked together as
ideas occur; realists may consider it’s the best way to retain the interest of the
student, who has the means of checking progress in easy stages.

Take our example program again, and now add line 70 which loops the program
back to the beginning, after pausing long enough for you to read the screen
response:

5 CLS
10 INPUT "WHAT IS YOUR INPUT "WHAT IS YOUR SALARY";SALARYSALARY";SALARY
20 IF SALARY 20 IF SALARY << 10000 THEN GOT0 10000 THEN GOT0 30 ELSE ELSE 40
30 PRINT "ASK FOR A PAY RISE": ENDPRINT "ASK FOR A PAY RISE": END
40 PRINT "ASK FOR A BIGGER CAR"40 PRINT "ASK FOR A BIGGER CAR"
50 IF SALARY 50 IF SALARY >30000 THEN PRINT THEN PRINT
"and get a good accountant""and get a good accountant"

60 IF SALARY 60 IF SALARY >25000>25000 THEN PRINT THEN PRINT
IIII and Lend me a fiver"and Lend me a fiver"

70 for 70 for n=ln=l to 900: next n:goto 5 to 900: next n:goto 5
runrun

Note that the new line, and other lines that have been added, have been entered in
lower case to remind you that AMSTRAD BASIC understands the difference
between a variable name, and keyword. Press [ESC] twice to break from this
program, then L I S T the program and see how the computer converts the keywords
to UPPER CASE letters, but leaves the variable n in lower case.

More BASIC Chapter 4 4 Page 55

Line 70 introduces a delay loop as the computer counts ‘n’ from 1 to 900 before
executing the next statement - G 0 T 0 5. Thus the program re-cycles itself without
ending. The only way out is to [ESC]ape using the [ESC] key provided. Pressing this
once will stop execution of the program. Pressing it again will BREAK out into the
direct command mode, without losing the contents of the program memory.
In fact, unless you press [ESC] while the computer is still looping through the delay
on line 70, the program will break immediately, since the computer isn’t executing
anything when it is waiting for an input. The line it was waiting on will be listed
after the Break. If you escape while the computer is waiting for input, you will get
the message:

Break in 10Break in 10

If you can catch it in the delay loop, the message after the second depression of the
[ESC] key is:

BreakinBreakin

If you escape during the loop on line 70, you will suspend operation, and this can be
resumed where it left off simply by pressing ‘any key’. If you break out of the
program, you can also resume where you broke out by entering:

CONTCONT

And the program *ill C 0 N Tinue from the line in which operation was suspended.
Whatever you do with the [ESC] key, you will not lose the program stored in current
memory unless you specifically instruct the computer to clear it out using a N E W
command - or you issue a full reset command by holding down the [CTRL] [SHIFT]
and [ESC] keys simultaneously.
Thus there should be no need to provide a safety net for those who ‘inadvertently’
reset the machine. The action of clearing out the current program memory is very
deliberate, and very permanent. Save anything on to the cassette if you are in any
doubt whether you will want to use it again.

4.7 More variables, and strings
The essence of computing is the variable. If the computer is dealing strictly with
fixed commodoties, then it is merely an electronic typing aid. Remember that if any
part of a mathematical expression is variable, then the result must also be variable.
Variables have three attributes or characteristics: a name, a type and an
‘organisation’. Names have been discussed earlier (4.1) - types are optional, so we
could define a variable according to the rules of (3.4) as:

The type markers are: (name,[ctype marker)]

X for integer numbers where anything to the right of a decimal point is discarded.
Integer variables occupy less space in memory, and so programs that do not require
decimal manipulations can be made to run faster if the variables are D E Fined as
integers. The command D E F I NT indicates that variable names without an
implicit type marker are to be taken as integer variables. Following the command
DEFINT A therefore, the same variable could be called A% or A, both being integer.
Integer values range from -32768....+32767.

Chapter 4 Page 6 More BASIC

! (

the
var

$:
lett
bei:

NANA

usus
55
66
I@I@

5;5;
4444
5c5c

I

6C6C
I

6'6'

7171

I?I?
UPUP
PIPI
thth

WW
coco

22
IIII
2121
3'3'
44
55

n

! declares a variable to be real - which means the integer part, and the portion to
the right, of the decimal point. Variables default to being real upon switch on&al
variables can take any value in the range 2.9339 to 1.73+38.

$ indicates a string variable, where the contents may be a mixture of numbers,
letters etc. In other words an arbitrary collection of characters that are delimited by
being enclosed within double quotes ” ‘I. For example:

NAME$="BOBNAME$="BOB SMITH" SMITH"

Using this in our evolutionary example, add line 6, and adjust line 60:
5 CLSCLS
6 INPUT "What is your INPUT "What is your name";NAME$name";NAME$
10 INPUT "WHAT IS YOUR 10 INPUT "WHAT IS YOUR SALARY";SALARYSALARY";SALARY
20 IF SALARY IF SALARY << 10000 THEN GOT0 THEN GOT0 30 ELSE 40ELSE 40
30 PRINT "ASK FOR A PAY RISE": END30 PRINT "ASK FOR A PAY RISE": END
40 PRINT "ASK FOR A BIGGER CAR"PRINT "ASK FOR A BIGGER CAR"
50 IF SALARY 50 IF SALARY >30000>30000 THEN PRINT THEN PRINT
"and get a good accountant""and get a good accountant"

60 IF SALARY IF SALARY >25000>25000 THEN PRINT THEN PRINT
IIII and lend me a fiver and lend me a fiver ";NAME$";NAME$

61 61 DAILY.RATE=SALARY/365:DAILY.RATE=SALARY/365:
PRINT "that's PRINT "that's f";DAILY.RATE;"f";DAILY.RATE;" a day" a day"

70 FOR FOR n=ln=l to 5000: NEXT n:GOTO 5 to 5000: NEXT n:GOTO 5 .
runrun
Note that Note that a space has been added after f i v e ri v e r or the name would be butted hard
up against f i v e r . Try it if you don’t believe us! The semicolon ; at the end of
P R I N T P R I N T or I N P U T P U T statement supresses the computer’s desire to start a new line at
the end of each such statement - unless told otherwise.

We can also work in the subject of integers by adding line 61. Just type it in, and the
computer will organise the program:

5 CLSCLS
6 INPUT "What is your 6 INPUT "What is your name";NAME$name";NAME$
10 INPUT "WHAT IS YOUR 10 INPUT "WHAT IS YOUR SALARY";SALARYSALARY";SALARY
20 IF SALARY 20 IF SALARY << 10000 THEN GOT0 30 ELSE 40THEN GOT0 30 ELSE 40
30 PRINT "ASK FOR A PAY RISE": END30 PRINT "ASK FOR A PAY RISE": END
40 PRINT "ASK FOR A BIGGER CAR"40 PRINT "ASK FOR A BIGGER CAR"
50 50 IF SALARY SALARY >30000>30000 THEN PRINT THEN PRINT
"and get a good accountant""and get a good accountant"

60 60 IF SALARY SALARY >25000>25000 THEN PRINT THEN PRINT
I,I, and tend me a fiver and tend me a fiver ";NAME$";NAME$

61 61 DAILY.RATE=SALARY/365:DAILY.RATE=SALARY/365:
PRINT "that's PRINT "that's f ";DAILY.RATE;"";DAILY.RATE;" a day" a day"

70 FOR 70 FOR n=ln=l to 5000: NEXT n:GOTO 5 to 5000: NEXT n:GOTO 5
runrun

NoteNote that the delay in line 70 has been increased to 5000 now that there’s more to
read on the screen. The result of the daily rate calculation is untidy - you might as
well round it, to an integer value. Add line 62

More BASIC Chapter 4 4 Page 7

5 CLS5 CLS
6 INPUT "What is 6 INPUT "What is your your name";NAME$name";NAME$
10 INPUT "WHAT IS YOUR SALARY";SALARY10 INPUT "WHAT IS YOUR SALARY";SALARY
20 20 IF SALARY SALARY << 10000 THEN GOT0 10000 THEN GOT0 30 ELSE 40ELSE 40
30 PRINT "ASK FOR A PAY RISE": 30 PRINT "ASK FOR A PAY RISE": END
40 PRINT "ASK FOR A BIGGER CAR""ASK FOR A BIGGER CAR"
50 50 IF SALARY SALARY >30000>30000 THEN PRINT THEN PRINT
"and get a good accountant""and get a good accountant"

60 60 IF SALARY SALARY >25000>25000 THEN PRINT THEN PRINT
IIII and lend me a fiver and lend me a fiver ";NAME$";NAME$

61 61 DAILY.RATE=SALARY/365:DAILY.RATE=SALARY/365: PRINT PRINT
"that's "that's f";DAILY.RATE;"f";DAILY.RATE;" a day" a day"

62 62 INTEGER.RATE%=DAILY.RATE:INTEGER.RATE%=DAILY.RATE: PRINT PRINT
"0"0 r r f ‘I; INTEGER.RATE%;"INTEGER.RATE%;" if you are not if you are not

worried about worried about the odd pence"the odd pence"
70 FOR 70 FOR n=ln=l to 5000: NEXT n:GOTO 5 to 5000: NEXT n:GOTO 5

And run again.

Note that you must remember to continue to use the type marker % since it is
possible to have a real variable with the same name as the integer variable, the
difference being identified by the % symbol. Also see how the computer display
‘wraps’ lines that are too long to fit on a single line (it happens in all three modes).
Use M 0 D M 0 D EE 2 for writing long programs, since it’s much easier to read programs
that are not for ever running over the ends of the lines.

TogettoMODETogettoMODE 2,type 2,type

MODE 2MODE 2

And to produce black on white display that is easier to read on the CTM640, enterenter
the following three direct commands:

INK I,0
INK INK 0,130,13
BORDER 13BORDER 13

Now LIST LIST again.

4.8 Display formatting

Part of the evolution of your program is the process of tidying it up from time to
time. The first thing we can do is renumber all the lines to multiples of 10 by using
the R E N U M command. At the R e a d ya d y prompt, type:

RENUMRENUM

And then L I S T again:

Chapter 4 Page 8 More BASIC

10
2020
3030
4040
5050
6060
7070
"i"i

8080
IIII

90'90'II.II.

101101
"1"1

1:1:

All
hoc
the

NO
lin

IE
21
31
41

:I
7’

8

9

1

Y
11

::
t

1
;
,

10 CLSCLS
20 20 INPUT "What is your "What is your name";NAME$name";NAME$
30 30 INPUT “WHAT IS YOUR SALARY";SALARYYOUR SALARY";SALARY
40 40 IF SALARY SALARY << 10000 THEN GOT0 50 ELSE 60 10000 THEN GOT0 50 ELSE 60
50 PRINT "ASK FOR A PAY RISE": END50 PRINT "ASK FOR A PAY RISE": END
60 PRINT "ASK FOR A BIGGER CAR"60 PRINT "ASK FOR A BIGGER CAR"
70 70 IF SALARY SALARY >30000 THEN PRINT THEN PRINT
"and get a good accountant""and get a good accountant"

80 IF SALARY IF SALARY >25000 THEN PRINT THEN PRINT
,I,I and lend me a fiver and lend me a fiver ";NAME3";NAME3

90 90 DAILY,RATE=SALARY/365:DAILY,RATE=SALARY/365: PRINT PRINT
"that's "that's f";DAILY.RATE;"f";DAILY.RATE;" a day" a day"

100 INTEGER.RATE%=DAILY.RATE: PRINT100 INTEGER.RATE%=DAILY.RATE: PRINT
"or "or f”; INTEGER.RATE%;" if you are notINTEGER.RATE%;" if you are not
worried about the odd pence"worried about the odd pence"
110 FOR 110 FOR n=ln=l to to 5000: NEXT n:GOTO 10NEXT n:GOTO 10

All the line numbers have been rounded up - including those referred to within the
body of the program. It wouldn’t be much to you use if BASIC didn’t keep track of all
the lines numbers and update them all simultaneously.

Now we’ll tidy up the display on the screen - and to do this, first disable the loop on
line 110, by turning the line from a command into a R E Mark:

1 0 CLSCLS
20 INPUT "What is your 20 INPUT "What is your name";NAME$name";NAME$
30 INPUT "WHAT IS YOUR SALARY";SALARY30 INPUT "WHAT IS YOUR SALARY";SALARY
40 IF SALARY 40 IF SALARY << 10000 THEN GOT0 50 ELSE 10000 THEN GOT0 50 ELSE 60
50 PRINT "ASK FOR A PRINT "ASK FOR A PAY RISE”: ENDEND
60 PRINT "ASK FOR A BIGGER CAR"60 PRINT "ASK FOR A BIGGER CAR"
70 70 IF SALARY SALARY >30000 THEN PRINT THEN PRINT
"and get a good accountant""and get a good accountant"

80 80 IF SALARY SALARY >25000>25000 THEN PRINT THEN PRINT
IIII and lend me a fiver and lend me a fiver ";NAME$";NAME$

90 90 DAILY.RATE=SALARY/365:DAILY.RATE=SALARY/365: PRINT PRINT
"that's "that's f";DAILY.RATE;"f";DAILY.RATE;" a day" a day"

100 INTEGER.RATE%=DAILY.RATE: PRINT100 INTEGER.RATE%=DAILY.RATE: PRINT
"0"0 rr f ‘I; INTEGER.RATE%;" if you are notINTEGER.RATE%;" if you are not

worried about the odd pence"worried about the odd pence"
110 REM FOR 110 REM FOR n=ln=l to 5000: NEXT n:GOTO 10 to 5000: NEXT n:GOTO 10

Inserting R E M at the beginning of the line causes the remainder to be bypassed by
BASIC, which then ends the program and returns to the Ready prompt - leaving
the screen display in view. Now type in:
15 mode 1mode 1

Line 15 will firstly fix the mode of the display so that regardless of what mode was
active when you asked the program to run, line 15 will set it to mode 1. The M 0 D E
command automatically performs a C LS - so line 10 is now redundant, but we’ll
leave it there anyway.

More BASIC Chapter 4 Page 9

Now R U N R U N the program and respond:

What is your name? BobWhat is your name? Bob
WHAT IS YOUR SALARY? 40000WHAT IS YOUR SALARY? 40000
ASK FOR BIGGER CARASK FOR BIGGER CAR
and get a good accountantand get a good accountant
. I . and lend me a fiver Boband lend me a fiver Bob
that's that's f 109.589041 a day109.589041 a day
or or fll0
if you are not worried about the odd peif you are not worried about the odd pe
ncence
ReadyReady

It’s not very elegant - especially with the break in the word p e n c e p e n c e . Add...
25 PRINT: PRINTPRINT: PRINT
85 PRINT85 PRINT

and EDIT 100 EDIT 100 toread:

100 INTEGER.RATE%=DAILY.RATE: PRINTINTEGER.RATE%=DAILY.RATE: PRINT
"0 "0 rr f”; INTEGER.RATE%;"INTEGER.RATE%;" if you are if you are ":PRINT":PRINT
"not worried about the odd pence""not worried about the odd pence"

RUN RUN again, and you will see that the computer has placed i f you a a rr e e back
on the line above, since it will now fit (in NODE 1). NODE 1). Add line120 to drive the
R e ad y message further down the screen:
1 2 0 ? : ? : ? : ? : ?
And then r u n the program again; or suppress R e ad y R e ad y altogether bv typing:
120 GOT0 GOT0 120

Once you r u n this version, the only way out is to [ESC]ape. Remember that ? is
a quick means of typing P R I N T . Now L I S T L I S T toto check the results so far:
10 CLSCLS
15 MODE 1MODE 1
20 INPUT "What is your INPUT "What is your name";NAME$name";NAME$
25 PRINT:PRINT25 PRINT:PRINT
30 INPUT "WHAT IS YOUR SALARY";SALARYINPUT "WHAT IS YOUR SALARY";SALARY
40 IF SALARY 40 IF SALARY << 10000 THEN GOT0 10000 THEN GOT0 50 ELSE 60ELSE 60
50 PRINT "ASK FOR A PAY RISE": ENDPRINT "ASK FOR A PAY RISE": END
60 PRINT "ASK FOR A BIGGER CAR"60 PRINT "ASK FOR A BIGGER CAR"
70 IF SALARY IF SALARY ~30000 THEN PRINT THEN PRINT
"and get a good accountant""and get a good accountant"

80 80 IF SALARY SALARY >25000 THEN PRINT THEN PRINT

8kNT8kNT
and lend me a fiver and lend me a fiver ";NAME$";NAME$

90 90 DAILY.RATE=SALARY/365:DAILY.RATE=SALARY/365: PRINT PRINT
"that's "that's f” ;DAILY.RATE;";DAILY.RATE;" a day" a day"

100 INTEGER.RATE%=DAILY.RATE: PRINT100 INTEGER.RATE%=DAILY.RATE: PRINT
"or "or f”; INTEGER.RATE%;"INTEGER.RATE%;" if you are if you are ":PRINT":PRINT
"not worried about the odd pence""not worried about the odd pence"

110 110 REM:FORREM:FOR n=ln=l to to 5000: NEXT n:GOTO 10NEXT n:GOTO 10
120 GOT0 120120 GOT0 120

Chapter 4 Page 10 More BASIC

4.9

so f
synt
inte
sevE

LOILOI

. ..pl
If y’
ReiRei
thethe

16
ruru
and
car:
[ES
26

RURU
on
co-1
If ?
she
thf
N O
fi0
exi

co1
mr
rej

4.
1tr
(11’

IIII
WI

rel
[C

1

:I

31
4

4.9 LOCATE

So far, most BASIC commands have been written using the universal BASIC
syntax that can be understood by most machines that include any sort of BASIC
interpreter. LO CAT E LO CAT E is one of the dialect features of AMSTBAD BASIC (and
several others) that allows you to position the text cursor anywhere on the screen:

LOCATE LOCATE IO,4IO,4

. ..places the text cursor in the 10th column, 4 lines down from the top of the screen.
If you attempt to do this as a direct statement, the cursor will LO CA T E - but the
Ready prompt will cause a new line to be started so that the cursor ends up on
the left margin once again. Add line 16:

16 LOCATE LOCATE IO,4IO,4
runrun
and see that the first input request is lowered and inset accordingly. The next line
carries on as before - flush left - since line 25 inserts a couple of empty lines. Press
[ESC] twice, then add line 26:

26 LOCATE LOCATE IO,4

R U N the program, and the second question ‘overwrites’ the first. You can now carry
on placing the text exactly where you want it to appear on the screen, using the
co-ordinates on the screen planners listed in Appendix 6.
If you want all the questions and comments to appear on the same line, then you
should precede each LO C A T E by a C LS : to avoid confusion with the remains of
the last entry.
Note that the co-ordinates of LOCATE LOCATE may be variables themselves, generated
from within,the program. We’ve worn the ‘salary’ program out by now, so the next
example will be based on a different topic. If you want to save what you have
constructed this far, then do so now using the cassette commands of Chapter 2. You
may even have grown to like the program by now - so you may wish to keep it to
refer to, and expand it further with the commands about to be introduced.

4.10 I F....THEN
Its use is straightforward and quite literal. I F logical expression, T H E N G 0 T 0
line number is one of several forms of the command.

I F checks to see if the result of the logical expression happens to be true - in
which case the option is executed. The I F operation can be built into loops that
repeat when a specified condition is, or is not satisfied. Beset the computer using
[CTRL][SHIFTj[ESC] and type in:
1 MODE 1MODE 1
10 10 AMSTRAD=OAMSTRAD=O
20 PRINT "AMSTRAD CPC464 20 PRINT "AMSTRAD CPC464 colourcolour personal personal
computer"computer"

30 AMSTRADAMSTRAD = AMSTRAD = AMSTRAD +I+I
40 IF AMSTRAD AMSTRAD (10(10 GOT0 GOT0 2 0

More BASIC Chapter 4 Page 11

Run this and you will see that the print statement of line 20 is repeated until the
condition in line 40 is fulfilled. Thus 40 loops back to 20. See the significance of the
term ‘variable’ in the way that the value of AM S T R A D changes with every looping
of the program.

If you want to see what’s happening to the value of AM AM SS T R A D T R A D during this
program, then we can add in another line at 35.

35 LOCATE LOCATE 1,20: PRINT AMSTRAD:LOCATE l,AMSTRAD PRINT AMSTRAD:LOCATE l,AMSTRAD
runrun

If that was too fast, slow it down with a delay loop:

36 for 36 for n=ln=l to 500:next to 500:next

Now add a touch of colour (if you have the CTM640 option) by including:

34 BORDER AMSTRADBORDER AMSTRAD

This line switches the colour of the border so that it is set to the value of AM S T R A D
by line 30. List the program again:

1 MODE 1MODE 1
10 10 AMSTRAD=OAMSTRAD=O
20 PRINT "AMSTRAD CPC464 colour personal20 PRINT "AMSTRAD CPC464 colour personal
computerllcomputerll

30 AMSTRADAMSTRAD q AMSTRAD AMSTRAD +I+I
34 BORDER AMSTRAD34 BORDER AMSTRAD
35 LOCATE 35 LOCATE 1,20:PRINT1,20:PRINT AMSTRAD:LOCATE l,AMSTRAD AMSTRAD:LOCATE l,AMSTRAD
36 FOR n=l TO 500:NEXT36 FOR n=l TO 500:NEXT
40 IF AMSTRAD 40 IF AMSTRAD <I0<I0 GOT0 GOT0 20
runrun

And no doubt you all want to see all the colours available on the CPC464, so alter
line 40...

40 IF AMSTRAD AMSTRAD <26<26 GOT0 20 GOT0 20

R U N R U N the program, and you will see all the available colours, starting with the
darkest, and ending up with bright white. You can make the border colour number
message more useful by adding the word B o r d e r. to line 35:

35 LOCATE LOCATE 1,20:PRINT1,20:PRINT "Border ";AMSTRAD: "Border ";AMSTRAD:
LOCATE l,AMSTRADLOCATE l,AMSTRAD

runrun

Whilst we’re on the subject of borders, when the program has finished and returned
to the R e a d y prompt9 enter

BORDER BORDER 14,614,6

A
tc
C(

ii

t1

F
S

Chapter 4 Page 12

And you will see that the border alternates between colours 14 and 6. You will have
to wait until the next chapter to get more explanation of the way graphics and
colours work. To round off this sub-section, enter:

ink ink 1,18,161,18,16

then...

speed ink speed ink I,5I,5

Now Now find the aspirin, and reset the computer. Remember to S A V E the program on
the cassette if you want to impress your friends.

4.11 ARRAYS

Some programs require a lot of variables to store data. This is all very well but it is
often dificult to keep track of which variable is being used to store which piece of
data. Fortunately, BASIC provides for this situation in the form of data arrays.

What is an array ? An array is basically a group of variables all referenced by the
same name.
The best means of explanation is to take an example. Consider a program that
simulates a card game, and involves the dealing of randomly selected cards.
Obviously the same card cannot be dealt twice and so a record must be kept of each
individual card. A simple way of doing this would be to assign a variable to each
card and then set the variable according to the card’s location - say 1 to signify that
it has been dealt and 0 to signify that it is still in the deck.

Evidently, this will involve 52 separate variables (unless you’re playing with a
fixed deck!) and you have to remember which variable refers to which card - this is
where the array comes in useful.

Firstly, we need to give the array a name, say PA C K. Now, in order to access a
particular variable or element in the array we simply give it a number. So if the
first thirteen elements are used to define the suite of hearts, then the six is
representedby PACK(6)PACK(6) thetenby thetenby PACK(10)PACK(10) andthekingby PACK(13).PACK(13).
Getting clearer ?

You cannot, unfortunately, simply go on and on referencing more elements ad
infinitum without giving the computer fair warning to reserve space in memory.
The D I M command is used to achieve this.

This command D I Mensions the array i.e. sets its size and so for our example of a
pack of cards fifty two elements need to be reserved.

The required BASIC is :

DIM PACK PACK (52)(52)

This tells the computer to reserve space in memory for fifty two variables (fifty
three actually since element zero can also be accessed).

More BASIC Chapter 4 Page 13

We can now write the framework for a subroutine to deal a card:

10 DIM DIM PACK(52)PACK(52)
20 FOR X20 FOR X = 1 TO 52= 1 TO 52
30 LET 30 LET PACK(X)=0PACK(X)=0
40 NEXT X40 NEXT X
.
1000 1000 CARD=INT(RND*52)+1CARD=INT(RND*52)+1
1010 1010 IF PACK(CARD)PACK(CARD) = 1 'THEN GOT0 1000= 1 'THEN GOT0 1000
1020 1020 PACK(CARD)PACK(CARD) = 1 = 1
1030 RETURN1030 RETURN

Note that the D Note that the D II M statement M statement is the first line in the program . This is because an
array can only be dimensioned once - it cannot be redimensioned further on in the
program.

Lines 20 to 40 set the elements of the array to zero. The subroutine that starts at
line 1000 then chooses a card at random and checks that it has not been already
dealt. If it has, then another is chosen until one is found that is still in the deck . The
routine then changes the value of the appropriate element in the array to signify
that the card has now been dealt and returns from the subroutine.

Array handling is not restricted to single dimensions but can be extended to any
number of dimensions desired. This is achieved by simply adding further reference
numbers to the variable. For example a 10x10x10 array (or matrix) can be set up by
the command:

DIM ARRAY(10,10,10)ARRAY(10,10,10)

This technique is useful for dividing data into smaller subsets within a large group.
In our example we could split the pack into four suits of thirteen cards which can
then be accessed separately by using the format:

DIM PACK PACK (4,131(4,131

Now Now if we wish to find the four of clubs,which might have been element 43 in our
original array, we simply have to examine element (2,4) - assuming that clubs are
the second ‘row’ in our new array.

Arrays do not have to be used to store numerical data but can be used to handle
strings as well . An application for this might be to record the names of people
booked into seats at a theatre or on an aeroplane flight.

4.12 DATA

This command, in conjunction with the command R E A D, can be used to input data
into a program. The required data is listed in a line with each item separated by a
comma and the whole list preceeded by the DA T A command. The data can now be
accessed sequentially using the R E A D command.

Chapter 4 Page 14 More BASIC

Ane

:“B
30

The
dati
the
thrc
ma
res

The
con
the
of1

R

N
el

T
P
rl

1
2
7
;
I
i.

,
,

An example program is:

10 READ READ X,Y,ZX,Y,Z
20 PRINT 20 PRINT X;"t";Y;"t";z;"X;"t";Y;"t";z;" = = ";X-tYtZ";X-tYtZ
30 DATA 30 DATA 1,3,5

The data can be either numerical or text or a mixture of both. Don’t worry if all your
data doesn’t fit onto one line you just start a new line with the DATA command at
the beginning. When the computer comes across a READ READ command it searches
through the program for the next sequential piece of data regardless of where it
may occur. Make sure you have sufficient data for all your R E A Ds or an error will
result.

The only way to interrupt this sequential input of data is to use the R E S T 0 R E
command. This sets the data pointer to the beginning of the program again allowing
the same data to be read several times if required. This program illustrates the use
ofthe DATA,READ DATA,READ and RESTORE RESTORE commands:

10 FOR C =I TO 5
20 READ READ XX
30 PRINT PRINT X$;"X$;" ";";
40 NEXT CNEXT C
50 RESTORERESTORE
60 GOT0 10
70 DATA HELLO,HOW,ARE,YOU,TODAYDATA HELLO,HOW,ARE,YOU,TODAY

Press Press [ESC] to break from this program.

Note that although the data line has been placed at the end of the program in the
example, it can be located anywhere that is convenient.

The DATA DATA command need not be used just to contain information which is to be
P R P R I N Ted when read; numeric values in a DA T A statement can, for example, be
read into a S 0 U N D command. Type in:

10 FOR n=ln=l TO TO 30
20 READ sREAD s
30 SOUND SOUND l,s,40,5l,s,40,5
40 NEXT n40 NEXT n
50 DATA 50 DATA 100,90,100,110,120,110,100,0100,90,100,110,120,110,100,0
60 DATA 60 DATA 130,120,110,0,120,110,100,0130,120,110,0,120,110,100,0
70 DATA 70 DATA 100,90,100,110,120,110,100,0100,90,100,110,120,110,100,0
80 DATA 80 DATA 130,0,100,0,120,150130,0,100,0,120,150

If you cannot hear anything, adjust the volume control at the right hand end of the
computer.

More BASIC Chapter 4 Page 15

Concluding this brief introduction to BASIC, here’s a program that enables you to
play pontoon with the CPC464 (blackjack and 21 are the other well known names
for variations). It demonstrates the use of many features of BASIC, and should be
readily understood thanks to the use of renresentative variable names. You can
embellish it with graphics, add tension with sound - and generally develop thethe
theme in the way that all the best BASIC programs evolve from a humble core.

The object of the game is get as close to a total of 21 by adding the face values of the
cards in your hand, and then for the house to attempt to match this, or get closer
still - without exceeding 21 and so going ‘bust’. After typing in line 1, use the
command A U T 0 to automatically generate the line numbers..

1 REM PONTOON
10 10 REM INITIALISE
2 0 YC=2:CC=2
30 ACES=0ACES=0
40 40 CACES=OCACES=O
50 50 S=0S=0
60 60 T=0T=0
70 70 DIM DIM SUITS(4)SUITS(4)
80 80 SUIT$(l)="CLUBS"SUIT$(l)="CLUBS"
90 90 SUIT$(2)=“HEARTS”
100 100 SUIT$(3)=“SPADES”
110 110 SUIT$(4)=“DIAMONDS”
120 120 CLSCLS
130 DIM PACK 130 DIM PACK (52)(52)
140 FOR X=L TO 52140 FOR X=L TO 52
150 PACK 150 PACK (X)=0(X)=0
160 NEXT X160 NEXT X
170 REM DEAL TWO CARDS TO EACH PLAYER170 REM DEAL TWO CARDS TO EACH PLAYER
180 LOCATE 180 LOCATE IO,3IO,3
190 190 PRINT"YOU";SPC(15)"HOUSE"PRINT"YOU";SPC(15)"HOUSE"
200 LOCATE 200 LOCATE 3,s3,s
210 210 GOSUBGOSUB 740 740
220 220 S=S+FS=S+F
230 IF 230 IF F=llF=ll THEN THEN ACES=ACES+lACES=ACES+l
240 LOCATE 240 LOCATE 3,63,6
250 250 GOSUBGOSUB 740 740
260 260 S=S+FS=S+F
270 270 IF F=llF=ll THEN THEN ACES=ACES+lACES=ACES+l
280 LOCATE 280 LOCATE 24,s24,s
290 290 GOSUBGOSUB 740 740
300 300 T=T+FT=T+F
310 IF 310 IF F=llF=ll THEN THEN CACES=CACES+lCACES=CACES+l
320 LOCATE 320 LOCATE 24,624,6
330 330 GOSUBGOSUB 740 740
340 340 T=T+FT=T+F
350 350 IF F=llF=ll THEN THEN CACES=CACES+lCACES=CACES+l
360 360 REM INPUT OPTION-TWIST REM INPUT OPTION-TWIST (T)(T) OR STICK(S) OR STICK(S)
370 370 X$=INKEY$:IFX$=INKEY$:IF X$C>"S"X$C>"S" AND AND X$<>"T"X$<>"T" THEN 370 THEN 370
380 380 IF X$=“S” THEN 560 THEN 560
390 LOCATE 390 LOCATE 3,YC+53,YC+5
400 400 YC=YC+lYC=YC+l

Chapter 4 4 Page 16 More BASIC

411411
4242
4343
4444
4545
4646
4747
4848
4949
5050
5151
5252
5353
5454
5555

:;:;
5858

iiii
6161
6262
6363

iiiiii
6666
6161
6E
65
71
7’
7;

;:
7!
7l
7;
71

i;

if;

;:

iI

:;
,

;I
9

M

410 410 GOSUBGOSUB 740 740
420 420 S=S+FS=S+F
430 430 IF F=ll THEN ACES=ACES+lF=ll THEN ACES=ACES+l
440 REM CHECK SCORE AND ACES440 REM CHECK SCORE AND ACES
450 IF 450 IF ?a<22?a<22 THEN 370 THEN 370
460 460 IF A C E SA C E S = 0 THEN 500= 0 THEN 500
470 ACES = ACES-l470 ACES = ACES-l
480 S=S-10480 S=S-10
490 GOT0 450490 GOT0 450
500 LOCATE 500 LOCATE 12,1912,19
510 PRINT "YOU'RE BUST"510 PRINT "YOU'RE BUST"
520 520 PRINT:PRINT"ANOTHERPRINT:PRINT"ANOTHER GAME GAME (Y/N)"(Y/N)"
530 530 X$=INKEY$:IFX$=INKEY$:IF X$<>"Y"X$<>"Y" AND AND X$<>"N"X$<>"N" THEN 530 THEN 530
540 540 IF X$=“Y” THEN RUN THEN RUN
550 END550 END
560 560 IF T>16 THEN GOT0 700 THEN GOT0 700
570 570 CC=CC+lCC=CC+l
580 LOCATE 580 LOCATE 24,CC+424,CC+4
590 590 GOSUBGOSUB 740 740
600 600 T=T+FT=T+F
610 610 IF F=llF=ll THEN CACES=CACES-1 THEN CACES=CACES-1
620 620 IF T<21 THEN 560 THEN 560
630 IF CACES630 IF CACES = 0 THEN 670= 0 THEN 670
640 CACES = CACES-1640 CACES = CACES-1
650 T=T-10650 T=T-10
660 GOT0 620660 GOT0 620
670 LOCATE 670 LOCATE 12,1912,19
680 PRINT "YOU 680 PRINT "YOU WIN”
690 GOT0 520690 GOT0 520
700 LOCATE 700 LOCATE 12,1912,19
710 710 IF T<ST<S THEN 680 THEN 680
720 720 PRINT"THEPRINT"THE HOUSE WINS" HOUSE WINS"
730 GOT0 520730 GOT0 520
740 REM DEAL CARD740 REM DEAL CARD
750 LET 750 LET CARD=INTCARD=INT ((RND(1)*52+1)RND(1)*52+1)
760 IF 760 IF PACKCCARD)=lPACKCCARD)=l THEN GOT0 750 THEN GOT0 750
770 770 PACK(CARD)=lPACK(CARD)=l
780 780 F=CARD-13*INTCCARD/13)F=CARD-13*INTCCARD/13)
790 IF 790 IF F=0F=0 THEN THEN F=13F=13
800 800 IF F=lF=l OR OR F>10F>10 THEN GOT0 850 THEN GOT0 850
810 PRINT F;" OF 810 PRINT F;" OF 'I;'I;
820 820 IF F>10F>10 THEN THEN F=10F=10
830 PRINT 830 PRINT SUITSCINTCCCARD-1)/13)+1)SUITSCINTCCCARD-1)/13)+1)
840 RETURN840 RETURN
850 850 IF F=ll THEN PRINT "JACK OF F=ll THEN PRINT "JACK OF ";";
860 IF 860 IF F=12F=12 THEN PRINT "QUEEN OF THEN PRINT "QUEEN OF ";";
870 IF 870 IF F=13F=13 THEN PRINT THEN PRINT “KING OF “;
880 880 IF F<>lF<>l THEN GOT0 820 THEN GOT0 820
890 F=ll890 F=ll
900 PRINT "ACE OF 900 PRINT "ACE OF ";";
910 GOT0 830910 GOT0 830

More BASIC Chapter 4 Page 1717

Enter T for a ‘twist’ (your next card to add to those originally dealt to you),
or S to stick and play the house. We don’t claim that this is the last word in card
games for your CPC464, but it will provide you with a substantial bone upon which
to add the meat of graphics and sound.
(Note that you must enter T(twist) or S(stick) in upper case capital letters).

4.13 Logical Expressions.

A major difference between a calculator and computer is the computer’s ability to
handle logical operations in applications like the conditional I F T H E N sequence.
To do this, the logical operators treat the values to which they are applied as bit
patterns (bitwise), and operate on the individual bits. The description and use is
entirely, weller logical - but it is notoriously difficult to describe logic in simple
terms without the precision of the concise definitions.

The two halves of the logical expression are known as the arguments. A logical
expression comprises:

<argument>[<logical operator)<argument>]

where:

<argument, is: NOT <argument>
or: <numeric expression>
or: <relational expression,
or: (<logical expression>)

Both the arguments for a logical operator are forced to integer representation, and
E r r o r 6 results if an argument will not fit into the integer range.

The logical operators, in order of precedence, and their effect on each bit are :

AN D Result is 0 unless both argument bits are 1
0 R Result is 1 unless both argument bits are 0
X 0 R Result is 1 unless both argument bits are the same

AN D is the most commonly employed logical operator, and does not mean ‘add’.

PRINT 10 AND 10 10 AND 10 rr

Results in the answer 10.

PRINT 10 AND 10 AND 12

Results in 8.

PRINT 10 AND 10 AND 10001000

Results in 8 again.

Chapter 4 Page 18

Thi
rep

11

Th
thf

0f

.*.
tll
sil

:I
31
41
51

0
al
er

PP

B

More BASIC

This is because the numbers
representation:

1010
1111101000

10 and 1000 have been converted to binary

The A N DA N D operation checks each corresponding bit at a time, and where the bit in
the top and the bottom row is 1, the answer is 1:

00000010000000001000

. ..which when converted back to decimal notation is our result of 8. All this means
that the logical operator AN D is used to detect when two conditions are present
simultaneously. Here’s a self explanatory application:

10 CLS:INPUT "The number of the CLS:INPUT "The number of the day";dayday";day
20 INPUT "The number of the INPUT "The number of the month";monthmonth";month
30 IF day=25 AND month=12 GOT0 50IF day=25 AND month=12 GOT0 50
40 GOT0 1040 GOT0 10
50 PRINT "Merry Christmas!"50 PRINT "Merry Christmas!"

0 R R works on bits as well, where the result is 1 unless both bits from the arguments
are 0, in which case the result is 0. Using the same numbers as for the ANDAND
example

PRINT 1000 OR 10
1002

Bitwise:

10101010
11111010001111101000

Resulting in the answer:

1111101010

And in the program example:

10 CLS:
20 INPUT "The number of the INPUT "The number of the month";monthmonth";month
30 IF month=12 OR 30 IF month=12 OR month=1month=1 OR month=2 GOT0 50 OR month=2 GOT0 50
40 CLS:GOTO 1040 CLS:GOTO 10
50 PRINT "It must be winter"50 PRINT "It must be winter"

More BASIC Chapter 4 Page 19

‘- *

10 10 CLSCLS
20 INPUT "The number of the month";month20 INPUT "The number of the month";month
30 IF 30 IF NOT(month=6NOT(month=6 OR month=7 OR OR month=7 OR month=81month=81 gotogoto 50 50
40 CLS:GOTO 40 CLS:GOTO 1010
50 PRINT "It can't be summer 50 PRINT "It can't be summer !"!"

The final major feature to consider is the fact that you can add together a number of
logical conditions to distill the facts yet further (up to the maximum line length) in
fact:

10 CLS:INPUT "The number of the 10 CLS:INPUT "The number of the day";dayday";day
20 INPUT "The number of the month";month20 INPUT "The number of the month";month
30 IF 30 IF NOT(month=12NOT(month=12 OR OR month=11month=11 AND day=29 GOT0 50 AND day=29 GOT0 50
40 CLS:GOTO 1040 CLS:GOTO 10
50 PRINT "This is neither December nor50 PRINT "This is neither December nor
January,but this might be a leap year"January,but this might be a leap year"

The result of a relational expression is either -1 or 0. The bit representation for -1 is
all bits of the integer = 1; for 0 all bits of the integer are 0. The result of a logical
operation on two such arguments will yield either -1 for True, or 0 for False.

Check this by adding line 60 to the above program:

6060 PRINT PRINT NOT(month=12NOT(month=12 OR OR month=11month=11
7070 PRINT (month=12 OR PRINT (month=12 OR month=11month=11

And when the program is run, entering 29 for the day and, say, 5 for the month will
produce the answer in line 50, and the actual values returned by the logical
expressions in lines 60 and 70 will be displayed beneath..

Finally, X 0 R (exclusive OR) produces a true result as long as both arguments are
different. The following summarises all these features in what is known as a truth
table; which is a convenient way of illustrating what happens in a bitwise logical
operation.

Argument A
Argument B

ANDAND result 0 0 1 0
OR result 1 1 1 0
XOR result 1 1 0 0

Chapter 4 4 Page 2020 More BASIC

5
Fix
Sul

*i
*fcr

*-

*-

*’

5.1

Th
bat
opt
antant
GUI
haha
mcmc

Aa
StJ
cal

5.

‘B:
fol
co

.Tl
811811
ai1ai1

TlTl
thth
sisi
SCSC
Ct

G

