
Appendix II
An introducion to the background of computing

Whose afraid of the jargon ?

As with all ‘specialist’ industries, computing has developed its own jargon as a
short-hand form of communicating complicated concepts that require many words
of ‘plain language’ explanation. It’s not just the high technology business that’s
guilty of hiding itself behind an apparent smokescreen of ‘buzz words’, jargon and
terminolgy - most of us have come up against the barriers to understanding, erected
by all the main professions and trades.

A major difference is that the confusion in legal jargon arises from the way the
words are used - rather than the words themselves, as is the case with computing.
Most people who grow familiar with computing terminology will go out of their way
to use the words in the most straightforward possible manner, so as to minimize the
complexity of the communication.

Don’t be mislead by the ‘plain language’ used in computing, it is not a literary
subject, but a precise science, and apart from the ‘syntax’ of the wording, the
structure of the communication is very straightforward, and not in the least
confusing or ambiguous. Teachers of computing have not yet managed to make an
art form out of trying to analyse the exact meaning intended by a programmer in
his program construction.

Having said that, although whether or not the meaning of a computer program is
obvious, there are still many aspects that can be analysed as either elegant or
untidy, and more emphasis is being put on a formal approach to program
construction now that the initial mayhem brought about by the micro revolution is
settling down.

Computing is rapidly understood by many young people who appreciate the
precision and simplicity of the ideas and the way they can be communicated - you
don’t find too many 10 year old lawyers - but you can find plenty of ten year old
programmers !

Bits and bytes: binary and hex tutorial Appendix II Page 1

Basics of BASIC
Virtually all home computers provide a language known as BASIC, which allows
programs to be written in the nearest thing to plain language presently available.
BASIC is an acronym of ‘Beginners All-purpose Symbolic Instruction Code - it no
longer has any particular significance as to the degree of the sophistication of the
languages, and many extremely complex and powerful programs are written using
BASIC.

However, there’s no doubt that the name has attracted many newcomers for its
promise of providing a starting place in the maze of computer program languages,
and this has contributed significantly to its universality.

From here onwards, the commonly used words that form the glossary of terms of
computing will be introduced by first printing them in italics. Don’t worry about
trying to learn them from the following sections - there’s an index to them in the
glossary.

Basics
BASIC is a computer language that interprets a range of permitted commands, and
then performs operations on data while the program runs. Unlike the average
human vocabulary of 5-8 thousand words (plus all the different ways verbs can be
used etc.), BASIC has to get by with about two hundred. Computer programs
written using BASIC have to follow rigid rules concerning the use of these words.
The syntax is precise, and any attempt to communicate with the computer using
literal or colloquial expressions (plain language) will result in the cold and clinical
message:

Syntax errorerror

This is not as restrictive as it first appears, since the language of BASIC (the
Syntax) is primarily designed to manipulate numbers - the, numeric data. The
words are essentially an extension of the familiar mathematical operators + / -etc.
- and the most import concept for newcomers to grasp is the fact that a computer can
only work with numeric data - information that is supplied to the Central Processor
integrated circuit is only supplied in the form of numerical data.

NUMBER PLEASE!
If a computer is used to store the complete works of Shakespeare, there is not a
single letter or word to found anywhere in.the system. Every piece of information is
first converted into a number that the computer can locate and then manipulate as
required.

BASIC interprets the words as numbers which the computer can then manipulate
using only addition, subtraction and features from Boolean logic that permits the
computer to compare data and select for certain attributes. - ie check to see if one
number is bigger then or the same as another, or to perform a defined task if one
number OR another meets certain criteria.

Appendix II Page 2 Bits and bytes: binary and hex tutorial

Throl
simp

The
instr
time

Part
and
Pa*

;2

If1
the
for
Pr ’
an
St/i
na
-t

Tl
di
PI

L
tI
tI
a(
c(
C(

i

ti

9

9

Through the medium of the program, the computer breaks down every task into a
simple series of Yes/No operations.

The process of multiplication is performed using multiple additions - the BASIC
instruction to multiply 35 by 10 (35*10) gets to the answer by adding 35 to itself ten
times.

Part of the Central Processor Unit (CPU) is loaded with the numeric data for 10,
and another part of the CPU is loaded with 35. Each time 35 is added to itself, the
part of memory containing 10 is decreased by one until it reaches zero, when the
process stops, and the accumulated result of 350 is sent to another part of the CPU
for Output as the answer.

If this process sounds cumbersome, then you’re quite right, as you have uncovered
the first and most important truth about computing. A computer is primarily a tool
for performing the simplest of repetetive tasks very quickly and with absolute
precision, Thus BASIC interprets the instructions given in the form of the program,
and translates them into the language that can be handled by the CPU. Only two
states are understood by the logic of a computer - ‘yes’ or ‘no’, represented in binary
notation as ‘1’ and ‘0’. The representation in Boolean logic is simply ‘true’ and ‘false’
- there’s no such thing as a ‘maybe’ or ‘perhaps’.

The process of switching between these two distinct states is the essence of the term
digital, and ‘is sometimes referred to as toggling. In the world of nature, most
processes move gradually from one completely ‘stable’ state to another in a smooth
progression. In other words, the transition is made by following the path of a line
between the two states - in an ideal digital enviroment the switch from one state to
the next is made in no time at all - but the physics of semiconductor science dictate
that there will be some minor delay, referred to as propagation delays - and it is the
accumulation of many of these propagation delays that provides the reason why a
computer has to spend some time processing the information before the answer
comes out.

In any case, the computer would have to wait a finite time for one task to have
finished before it can start work on the result of that first task - so there would need
to be some artificial delay imposed anyway. The digital process is black or white
where the stages in the transition via shades of grey have no significance
whatsoever. The smooth progression is via various shades of grey.

Bits and bytes: binary and hex tutorial Appendix II Page 3

If the ultimate answer is either 0 or 1, then there is no possibility of it being ‘nearly’
correct. The fact that computers can sometimes appear to make errors when
handling numeric data is due to the limitation of the size of numbers it can process
requiring ‘oversize’ data to be squeezed down to fit the space available, or truncated,
leading to rounding errors. eg 999,999,999 becomes 1,000,000,000.
In a world where the only two numbers available are 0 or 1, how do you then count
beyond 1 ?

Bits and Bytes
We just happen to be used to understanding numbers based on the decimal system
where the reference point is the number 10 - ie there are ten digits available to
represent quantities in range from 0 to 9 (which is used in preference to the
expression 1 to 10). The system where numbers range from 0 to 1 is the binary
system, and the units in which the system operates are called bits - an abbreviated
form of ‘Binary digiT’. It might be less confusing if you forget all about the decimal
context of the 0 and the 1, and use two totally different symbols to represent their
function: fl and * can be used equally well, as long as there is consistency
throughout.

The relationship between bits and decimal notation is simple to understand:

It’s actually conventional to declare the maximum number of binary digits being
used by adding leading zeros to make up the number to the full number of bits:
decimal 7 becomes
00111 binary
using 5 bit notation
In the binary system, the figures may be considered merely as indicators in columns
to specify whether or not a given power 2 is present (l), or not (0).
2O = 1
2l = 2 = 2 = 2(2”)
22 = 4 = 2x2 = 2(2’)
23 = 8 = 2X2X2 = 2(22)
24 = 16 = 2x2~2~2 = 2(23)
so the columns look like

24
:

3

??
2’ 2O

(116 0
1 1

0 2 1) = 19

In order to provide a shorthand method of referring to binary digit information, the
term byte is used to denote 8 bits of information. The highest number that can be
stored in a byte is then (binary) 11111111 - or (decimal) 255. This implies 256 actual
variations, including 00000000, which is still perfectly valid data to a computer.

Computers tend to manipulate data in 8 bit multiples. 256 is not a very large
number, so in order to acheieve an acceptable means of handling the memory, two
bytes are used to provide a method of addressing memory which is in the form of an
array, with a horizontal and vertical address by which the elements of that array
can be located:

Tl
lit

SC
a(
P’
T
l(
t1
dl

Appendix II Page 4 Bits and bytes: binary and hex tutorial

This array can locate up to (10x10) items of information using address numbers that
lie in the range 1 to 9. The item stored at position 3,5 is a ‘1’ - as is the item at 5,5.

So a binary array of 256x256 can handle 65,536 individual locations using 8 bit
addresses for the vertical and horizontal axes of the array. So our ‘0’ and ‘1’ have
progressed to being capable of identifying one of 65,536 unique elements.

The next level of shorthand for binary is the kilobyte &Byte or simply ‘K’) which is
1024 bytes. 1024 is the nearest binary multiple to the more familiar decimal use of
the term ‘kilo’ - and explains why a computer described as having a ‘64K’ memory
does in fact have a memory of 65,536 bytes (64 x 1024).

Thankfully, the BASIC interpreter does all the necessary conversions for you, and it
is quite possible to become a proficient programmer without a complete
understanding of binary. Although an appreciation of the significance of binary will
help you spot the many ‘magic’ or significant numbers that inevitably crop up as
you work through the science of computing.

It’s worth spending some effort to acquire an understanding of binary and the
various significant numbers 255, 1024 etc., since it is very unlikely that these will
change from the being the bedrock of computer operation in the forseeable future.
The certainty and simplicity that comes from working in only two states will
prevail over the enormously increased complexity that would result from any other
number base.

However....
Simple and elegant as it is, binary notation is longwinded and prone to inaccuracy
as it cannot be easily read at a glance. Binary has a number of associated counting
systems that act as shorthand for programmers. One such number system is widely
used in microcomputing called Hex (an abbreviation of hexadecimal).

Bits and bytes: binary and hex tutorial Appendix II Page 5

Here the number is based on 16, and is represented in a single character:

Decimal

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hex

0 1 2 3 4 5 6 7 8 9 A B C D E F

The hexadecimal system can break the eight bits of a byte into two blocks of four
bits, since 15 is a four bit number: 1111 binary. The first block indicates the number
of complete units of ‘15’, and the second indicates the ‘remainder’ - and this is where
the elegance of binary begins to emerge.

Reconsidering the table that introduced binary notation

Decimal Binary CPC464-ese Hexadecimal

0 0 fl 0
1 1 * 1
2 10 *fl 2
3 11 ** 3
4 100 *flfl 4
5 101 *fl* 5
6 110 **fl 6
7 111 *** 7
8 1000 “flflfl 8

9 1001 *flfl*10 1010 *fl*fl :
11 1011 *fl** B
12 1100 **flfl C
13 1101 **fl* D
14 1110 ***fl E
15 1111 **** F
16 10000 “flflflfl 10

An &bit number 11010110 can be subdivided, and then considered as two 4-bit
numbers known as nibbles , Hex D6. Throughout this guide a hex based number
will be introduced by the ‘&’ symbol eg &D6, and this is the number base most
commonly used by programmers using assembly language techniques. An assembly
language program is the nearest most programmers get to programming directly in
machine code, since the assembly language program allows the program to use
simple letter ‘mnemonics’ to specify the actual machine code ‘numbers’.

When using HEX, you must first work out the value of the first digit to obtain the
number of 16’s in the final number, and then add the remainder designated by the
second ‘half of the hex notation to obtain the total decimal equivalent. There’s a
powerful temptation to regard a number like &D6 as 13+6, or 136. But it’s
(13x16)+(6) = 214.

Appendix II Page 6 Bits and bytes: binary and hex tutorial

It’s
nm
is a

IfY
to
WOI

de\
the
ren
ma

IfS
hoc
con
Yol
the
the

Bil

It’s the same process you use when you read a decimal (also known as a Denary
number) number such as ‘89’ - ie (8x10)+(9). It just happens that multiplying by ten
is a great deal simpler unless you’ve had a lot of practise at multiplying by 16.

If you’ve got this far without becoming too confused, then you are well on your way
to getting a grasp of the basic principles of the computer. You may even be
wondering what all the fuss is about - and you’d be quite correct. A computer is a
device that manages very simple concepts and ideas: it just happens to perform
these tasks at great speed (millions of times per second), and with a huge capacity to
remember both the data that has been input, and the intermediate results of the
many thousands of very simple sums along the way to the result.

If you want to pursue the theory of your computer, there are literally thousands of
books available on the subject of computing. Some will tend to leave you more
confused than you were when you started reading them, and a few will actually lead
you along the way by revealing the simplicity and the fundamental relationships
that exist between the number systems, and the way your computer deals with
them.

Bits and bytes: binary and hex tutorial Appendix II Page 7

